

Sample Calculations

Sample Data

Time of Trial:	5 minutes = 3.0×10^2 seconds
Width of copper electrode	$2 \text{ cm} = 2.0 \times 10^{-2} \text{ meters}$
Length of electrode in solution	5 cm = 5.0×10^{-2} meters
Average ammeter reading	0.017 ampere = 1.7×10^{-2} Coulombs/second

Sample Nanoscale Calculations

Calculation 1: Calculate the number of electrons that flowed through the circuit in 5 minutes.

 $(1.7 \times 10^{-2} \text{ Coulombs/sec})(6.24 \times 10^{18} \text{ e}^{-1}/\text{Coulomb})(3.0 \times 10^{2} \text{ seconds}) = 3.18 \times 10^{19} \text{e}^{-1}$

Calculation 2: Calculate the number of zinc atoms that formed.

 $\frac{3.18 \times 10^{19} e^{-}}{2 \text{ electrons for each zinc ion}} = 1.59 \times 10^{19} \text{ atoms of zinc}$

Note: The next three steps would be similar to determining how many marbles form a single layer of marbles on a rectangular desk surface if you know the diameter of each marble.

Zinc atoms in each layer have a diameter of 3.06×10^{-10} meters.

Calculation 3: Calculate the number of atoms of zinc in a row across the width of the copper electrode. Note: Distances are measured in meters.

<u>2.0 x 10⁻² m</u> = 6.54 x 10⁷ atoms/row 3.06 x 10⁻¹⁰ m/atom Calculation 4: Calculate the number of atoms in a column along the length of the electrode that was in the solution.

<u>5.0 × 10⁻² m</u> = 1.63 × 10⁸ atoms/column 3.06 × 10⁻¹⁰ m/atom

Calculation 5: Calculate the number of atoms that formed a single layer on one side of the copper electrode.

Calculation 6: Calculate the number of atoms that formed a single layer on both sides of the copper electrode.

 $2 \times 1.06 \times 10^{16}$ atoms = 2.12×10^{16} atoms

Calculation 7: Calculate the average number of layers of zinc atoms.

 $\frac{1.59 \times 10^{19} \text{ atoms of zinc}}{2.12 \times 10^{16} \text{ atoms / layer}} = 7.50 \times 10^{2} \text{ layers of atoms}$

Remember that zinc atoms in each layer have a diameter of 2.48×10^{-10} meters.

Calculation 8: Calculate the average thickness of the layer of zinc.

 7.50×10^2 layers of atoms $\times 2.48 \times 10^{-10}$ meter/layer = 18.6×10^{-8} meters

The approximate thickness of the zinc was 186 nanometers.